Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathan D. Crane* and John Crompton

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.055 wR factor = 0.144 Data-to-parameter ratio = 25.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

8-(4-Methoxyphenyl)-3,5-bis[(*E*)-1-(4-methoxyphenyl)methylidene]-1,2,3,5,6,7-hexahydrodicyclopenta[*b*,e]pyridine

At 150 K, the tricyclic core of the title compound, $C_{34}H_{31}NO_3$, is close to planar. One of the three 4-methoxyphenyl substituents is twisted out of the plane of the tricyclic core due to steric congestion.

Received 14 November 2003 Accepted 20 November 2003 Online 29 November 2003

Comment

The title compound, (I) (Fig. 1), is observed to be mildly fluorescent in hydrocarbon solvents due to the extended conjugation of the pyridine and 4-methoxyphenyl groups.

In the solid state, the central tricyclic core is close to planar, with a maximum deviation from the least squares plane of 0.1454 (19) Å for the methylene atom C10. The angles between the least-squares planes of the pyridine ring and the three 4-methoxyphenyl groups are 43.65 (5), 12.56 (5) and 18.24 (5)°, respectively. Thus, steric congestion causes a substantial twist of the central unique 4-methoxyphenyl group, but packing effects also bend this group out of the plane of the

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitary size.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

molecule (Fig. 2). The molecules pack in layers (Fig. 3) and these out-of-plane 4-methoxyphenyl groups occupy the gaps in the neighbouring layers.

Experimental

The title compound, (I), was prepared by the method of Kneeland *et al.* (1993). Suitable crystals were grown by recrystallization from toluene. Spectroscopic analysis, IR (KBr disk, $v \text{ cm}^{-1}$): 2835 (*w*), 1605 (*m*), 1510 (*s*), 1291 (*m*), 1251 (*s*), 1238 (*m*), 1176 (*m*), 1035 (*m*), 822 (*w*), 807 (*w*), 590 (*w*), 528 (*m*); ¹H NMR (CDCl₃, p.p.m.): 7.64 (*br s*, 2H), 7.54 (*d*, 4H), 7.31 (*d*, 2H), 6.99 (*d*, 2H), 6.94 (*d*, 4H), 3.87 (*s*, 3H), 3.84 (*s*, 6H), 3.12 (*m*, 4H), 2.96 (*m*, 4H); ¹³C NMR (CDCl₃, p.p.m.): 161.0, 159.3, 158.4, 143.3, 139.5, 136.3, 131.0, 130.4, 129.5, 121.4, 113.9, 55.3, 29.4, 27.9; analysis calculated for C₃₄H₃₁NO₃: C 81.41, H 6.23, N 2.79%; found: C 81.15, H 6.31, N 2.87%.

Z = 2

 $D_x = 1.320 \text{ Mg m}^{-3}$

Cell parameters from 13469

Mo $K\alpha$ radiation

reflections

 $\theta = 2.0-32.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 150 (2) K

Needle, yellow

 $R_{\rm int} = 0.086$

 $\theta_{\rm max} = 32.3^{\circ}$ $h = -7 \rightarrow 8$

 $k = -16 \rightarrow 16$

 $l=-31\rightarrow 31$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.33 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

 $0.60\,\times\,0.20\,\times\,0.20$ mm

 $w = 1/[\sigma^2(F_o^2) + (0.0619P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.025 (3)

Crystal data

 $\begin{array}{l} C_{34}H_{31}NO_{3} \\ M_{r} = 501.60 \\ \text{Triclinic, } P\overline{1} \\ a = 5.8866 \ (7) \ \text{\AA} \\ b = 10.8186 \ (12) \ \text{\AA} \\ c = 20.898 \ (2) \ \text{\AA} \\ \alpha = 75.096 \ (9)^{\circ} \\ \beta = 85.572 \ (10)^{\circ} \\ \gamma = 78.964 \ (10)^{\circ} \\ V = 1261.8 \ (2) \ \text{\AA}^{3} \end{array}$

Data collection

Stoe IPDS–II area-detector diffractometer ω scans 27 584 measured reflections 8874 independent reflections 4469 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.144$ S = 0.928874 reflections 347 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

N1-C5	1.343 (2)	C4-C5	1.401 (2)
N1-C1	1.344 (2)	C5-C9	1.478 (2)
C1-C2	1.400(2)	C6-C18	1.336 (2)
C1-C6	1.481 (2)	C9-C25	1.339 (3)
C2-C3	1.405 (2)	C18-C19	1.470 (2)
C3-C4	1.401 (2)	C25-C26	1.467 (2)
C3-C12	1.490 (2)		
C5 - N1 - C1	114.00 (14)	N1 - C5 - C4	124.88 (15)
N1-C1-C2	125.69 (14)	N1-C5-C9	124.14 (15)
N1-C1-C6	123.32 (15)	C18-C6-C1	121.67 (15)
C1-C2-C3	119.65 (15)	C25-C9-C5	122.91 (14)
C4-C3-C2	114.97 (14)	C6-C18-C19	132.16 (15)
C5-C4-C3	120.56 (14)	C9-C25-C26	130.15 (15)
C1-C6-C18-C19	173.69 (17)	C5-C9-C25-C26	176.12 (17)

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C-

The molecular packing of one layer of (I).

H distances of 0.98 Å, but each group was allowed to rotate freely about its X-C bond. All other H atoms were placed in geometrically idealized positions, with C-H distances of 0.95–0.9 Å. $U_{\rm iso}({\rm H})$ was set to $1.2U_{\rm eq}({\rm C})$ for all H atoms.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.
- Kneeland, D. M., Ariga, K., Lynch, V. M., Huang, C. Y. & Anslyn, E. V. (1993). J. Am. Chem. Soc. 115, 10042–10055.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2001). X-AREA, X-RED and XSTEP32. Stoe and Cie GmbH, Darmstadt, Germany.